If it's not what You are looking for type in the equation solver your own equation and let us solve it.
399x^2-4=0
a = 399; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·399·(-4)
Δ = 6384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6384}=\sqrt{16*399}=\sqrt{16}*\sqrt{399}=4\sqrt{399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{399}}{2*399}=\frac{0-4\sqrt{399}}{798} =-\frac{4\sqrt{399}}{798} =-\frac{2\sqrt{399}}{399} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{399}}{2*399}=\frac{0+4\sqrt{399}}{798} =\frac{4\sqrt{399}}{798} =\frac{2\sqrt{399}}{399} $
| a^2+12a=30 | | (q-8)×4=8 | | 7y=24-5y | | 3x=5x-16 | | X/2=2x-13 | | 5*(3x-4)=13 | | X-0,33x=149 | | 2*(2x-1)=2x+6 | | -48+34-2y=0 | | -4.5x=1 | | 3x-16x=-39 | | 8=4+(20/2x) | | 2m=16,3m-1= | | 2m=163m-1 | | 10-(2y-4)+3y=12 | | 3x+13=1+3x | | 2x+4=40−2x | | 3x=48−5x | | x+x÷2=180 | | 8(x+2)=4x+24 | | 15-3x=-2x-(-3)^3 | | -4x+110=-7x+134 | | 95+-2x=185+-12x | | 15-3x=-2x-9-30^3 | | 169=30x+52-17x | | 1/2(10-6w)-2=-3w+1 | | 3/4x8=x | | 5n+3-5=40 | | 14x2/3=x | | 18t-4(t+5)=42 | | 4(h-1)=6h-4-2h | | 4y=5+9 |